
1

Guidelines for Deploying NGINX Plus
on Amazon Web Services
Optimize Performance by over 50% and costs
savings by 20% with Arm-based AWS EC2
M6g Instances

White Paper

Executive Summary
Amazon Web Services (AWS) recently launched Amazon EC2 M6g, C6g, and R6g

instances for general purpose compute workloads. These instances are powered

by the AWS Graviton2 Processor featuring 64-bit Arm Neoverse cores.

These AWS Graviton2 based instances deliver significant better performance and

cost savings over current generation of M5 instances. They are well suited for web

servers, application servers, load-balancers, microservices, gaming servers, mid-

size data stores, and caching fleets. These instances also appeal to developers,

enthusiasts, and educators across the Arm community as they provide quick,

easy, and cost-effective access to Arm ecosystems. In this whitepaper,

we explore deploying NGINX Plus with M6g instances.

NGINX is the most popular scale-out web application server, ranked as the

world’s leading web server powering more than 35% of active websites, according

to NetCraft.1 It is available in two flavors, an open source version and a commercially

supported version called NGINX Plus. NGINX Plus for Arm is readily available on

the AWS Marketplace, and includes a free trial to make it very easy for developers,

startups, and enterprises to get up and running on M6g instances.

In this document, we showcase the cost and performance benefits of deploying

NGINX Plus application delivery and web services on Amazon EC2 M6g instances.

In our performance testing, we focused on NGINX Plus configured as a reverse proxy

server and as an API gateway. Our analysis tests both reverse proxy and API gateway

use cases with and without HS256 JWT-based authentication. The HS256 JWT

authenticated results demonstrate average performance gains upto 54% for
M6g instances, compared to M5 instances of the same size.

Performance only tells part of the story, it’s even more important to look at price-

performance in a real-world scenario. To achieve this, we configured the host

infrastructure in a redundant manner that replicates a typical production deployment,

and then performed load tests across a range of requests per second (RPS) values using

a network traffic generator. To replicate a production deployment, NGINX Plus is deployed

Index

Executive Summary

Testing Configuration
and Raw Results

Background

Appendix

References

2

Table 1-a:
NGINX Plus Reverse
Proxy performance with
no authentication per
instance size between
M6g and M5

Table 1-b:
NGINX Plus Reverse
Proxy performance with
HS256 authentication
per instance size
between M6g and M5

using three nodes and tested across multiple EC2 instance types and RPS values. To allow

for redundancy, the maximum node utilization was capped at 66% to ensure the remaining

two nodes can handle 100% of the traffic in the case of a potential node failure.

The graphs below demonstrate an average performance benefit of up to 54%. In addition,

there is a 20% cost saving achieved when running on M6g versus M5 instances of the

same size:

3

Table 1-c: NGINX Plus
API Gateway performance
with no authentication
per instance size between
M6g and M5

Table 1-d: NGINX Plus
API Gateway performance
with no authentication
per instance size between
M6g and M5

When moving from a large to xlarge m6g instance (i.e. double the number of vCPUs),

the performance also doubles. Performance scales near-linearly up to 4xlarge instances,

where we see the performance scaling start to diminish. This is a result of the processor

no longer being the bottleneck as we increase the number of vCPU’s when using larger

instance sizes.

4

Table 2: NGINX Plus Cost
Savings for M6g vs M5
Instances based on total
RPS values

In our results, we demonstrate cost-performance benefits by showcasing RPS values

served by various instance sizes. In real-world deployments, customers can further optimize

by right sizing their instance choices within a given instance family. This will provide more

performance granularity and improved price to performance optimization based on the

specific deployment. Also, these cost comparisons are made using on-demand pricing

for these instances and results will vary for AWS EC2 Reserved & Spot instances.

Conclusion
These performance results provide you with deployment guidelines for common

NGINX Plus configurations across a variety of Amazon EC2 instances and showcase

the cost benefits of deploying Amazon EC2 M6g instances. In summary, Amazon

EC2 M6g instances demonstrate upto 54% average performance gains and 20% cost

savings for scale-out NGINX deployments. This document also provides a framework

to deploy additional features and services on M6g instances. With NGINX Amazon

Machine Images (AMIs) readily available for M6g instances, you can deploy NGINX

Plus2 on AWS EC2 M6g with ease to achieve the best price-performance for your

specific use case.

Try NGINX Plus on AWS M6g instances now.

 NGINX Plus Basic – Amazon Machine Image (AMI) on AWS

 NGINX Plus Enterprise - Amazon Machine Image (AMI) on AWS

 NGINX Plus Developer - Amazon Machine Image (AMI) on AWS

https://aws.amazon.com/marketplace/pp/B07QD34VKD
https://aws.amazon.com/marketplace/pp/B07RQN9ZQP
https://aws.amazon.com/marketplace/pp/B07RRF1RY9

5

Testing Configuration and Raw Results
This section provides test setup details and performance results for the NGINX

Plus Reverse Proxy (RP) and API Gateway (APIGW) features. The performance

of these two functions often determine the overall performance of many of

the NGINX deployments on AWS today.

Test Setup

The test setup is designed to measure the throughput of an RP or an APIGW.

The throughput metric generated by this test is HTTPS Requests Per Second (RPS).

For client traffic generation, we used the open source benchmarking

application wrk2.

The following describes the test flow:

1. The client (wrk2) sends an HTTPS request for a 1kb static file to the RP/APIGW.

2. If JWT authentication is not enabled, this step is skipped. If JWT authentication

is enabled, the RP/APIGW verifies the signature with the appropriate algorithm.

If the signature is deemed valid, we move on to the next step. Otherwise a

401 error is returned to the client.

3. The RP/APIGW checks if the requested Uniform Resource Identifier (URI)

should be rewritten. If the URI is not rewritten, this is the RP case. If the

URI is rewritten, this is the APIGW case.

4. After the URI check and potential rewrite, the request is sent to one of

the upstream server instances (round robin load balancing in our case).

5. The upstream that receives the request responds to the RP/APIGW

with the requested file.

6. Last, the RP/APIGW sends the file to the client to complete the request.

7. Our test repeats the above steps as often as it can for a 60-second

duration. At the end of the 60s test, the client (wrk2) calculates

the RPS (i.e. throughput) achieved.

Figure 1: Test Setup

https://github.com/giltene/wrk2

6

In the diagram above, the instance that is running the RP/APIGW (middle - blue) is

being measured for throughput. To ensure the client and upstreams (left/right - green)

are not a bottle neck, we selected very large instances for those components of the

test setup (see Appendix B – Load Generator & Upstreams Config).

The payload size is a relatively small 1kb because larger files stress the AWS network

rather than the instances. Since our interest is in the performance of the instances

themselves, smaller payloads are more appropriate for this test. The complete NGINX

configs used for all instances in the diagram above can be found in Appendix D –

NGINX Configurations.

The following table shows the various instance types we used for the RP/APIGW:

Table 3: AWS EC2
Instances

Additional instance configuration can be found in Appendix A – Reverse Proxy/API

Gateway Configs.

For more information on AWS EC2 instances, please visit https://aws.amazon.com/
ec2/instance-types/

Test Scenario #1: NGINX Plus reverse proxy

In our setup, a single AWS EC2 instance is stress tested with NGINX Plus RP

functionality to achieve maximum RPS per instance using the load generator,

which self-throttles based on increased latency values for the responses.

In the real world, these instances are configured with N+1 configuration where

N is the number of instances required to meet the performance requirements4

(typically a minimum of two) to achieve high availability. In addition, there is at least

one instance reserved as backup in the event of an instance failure. We configured

three nodes to achieve an N+1 configuration with each node capped at a maximum

AWS Instance Sizes Number of vCPUs

M6g Large

XLarge

2XLarge

4XLarge

2

4

8

16

M5 Large

XLarge

2XLarge

4XLarge

2

4

8

16

7

of 66% utilization based on the maximum measured response RPS values. This allows

sufficient headroom on each node to ensure service continuity in the case of an

instance failure.

Table 4 below shows the effective hourly cost of each instance type for a three-

node setup based on the responses per second necessary for the deployment.

It also highlights the range of RPS achieved for a three-node deployment for

various EC2 instances.

For example, to achieve up to 40,000 RPS with three instances operating at

66% utilization ratios, we look at each instance’s RPS values at 66% from table

6. For example, three M6g.large instances can achieve 40,000 RPS (22,543 RPS

*3). Similarly, three M5.large instances can achieve this same level of aggregate

performance, but do so at a higher cost. Based on these RPS requirements and

the $/hour values for each instance type, we are able to provide optimal cost-

performance guidance.

Table 3 also illustrates an average of 45% performance gain for M6g instance over

M5 across multiple instance sizes. When JWT authentication is added, there’s an

expected drop in overall RPS served by each instance type, but the performance

gains still remain significant for M6g over M5.

Table 3: NGINX Reverse
Proxy Performance per
Instance size between
M6g and M5

Table 5 shows three EC2 M6g.large instances cost $0.23/hour compared to $0.29/

hour for three EC2 M5.large instances based on published on-demand EC2 pricing3

as of August 2020. In the table below, the green cells identify the least expensive

solution that meets the required performance.

Instance
Size

M6g M5 Performance
Gains

M6g M5 Performance
Gains

 Large 45,836 29,211 57% 34,028 20,895 63%

 XLarge 88,453 57,416 54% 64,634 43,591 48%

 2XLarge 187,244 125,346 49% 128,589 87,691 47%

 4XLarge 359,123 312,075 15% 326,608 207,418 57%

 Avg Gains 44% 54%

Reverse Proxy 1KB - Performance results for M6g vs M5 per instance size

HS256 JWT Authentication –
Max Request per Second

No Authentication –
Max Request per Second

8

Table 4: NGINX Reverse
Proxy Price & Performance
per Instance type

Table 5: Maximum Reverse
Proxy RPS values per
Instance type based on
HS356 Authentication

Table 5 shows instance sizes, maximum RPS, and RPS values at 66% utilization ratios

per instance type.

Total RPS RPS/instance M6g - $/hr M5 - $/hr

 250 83 0.23 0.29

 500 167 0.23 0.29

 1,000 333 0.23 0.29

 2,000 667 0.23 0.29

4,000 1,333 0.23 0.29

8,000 2,667 0.23 0.29

16,000 5,333 0.23 0.29

24,000 8,000 0.23 0.29

32,000 10,667 0.23 0.29

40,000 13,333 0.23 0.29

80,000 26,667 0.46 0.58

 160,000 53,333 0.92 2.3

 320,000 106,667 1.85 2.3

Redundancy: 3 Max util: 66%

Instance vCPU maximum RPS RPS at 66%
utilization

$/hour

M6g.Large 2 34,028 22,458 $ 0.077

M6g.XLarge 4 64,634 42,658 $ 0.154

M6g.2XLarge 8 128,589 84,869 $ 0.308

M6g.4XLarge 16 326,608 215,562 $ 0.616

M5.Large 2 20,895 13,790 $ 0.096

M5.XLarge 4 43,591 28,770 $ 0.192

M5.2XLarge 8 87,691 57,876 $ 0.384

M5.4XLarge 16 207,418 136,896 $ 0.768

Reverse Proxy 1KB

9

Test Scenario #2: NGINX API Gateway

As the leading high-performance, lightweight reverse proxy and load balancer,

NGINX Plus has the advanced HTTPS processing capabilities needed for handling API

traffic. The NGINX APIGW can address multiple use cases in an efficient and scalable

manner. One advantage of using NGINX Plus as an APIGW is that it can perform that

role while simultaneously acting as an RP, load balancer, and web server for existing

HTTPS traffic. If NGINX Plus is already part of your application delivery stack, then

it is generally unnecessary to deploy a separate APIGW. However, some of the

default behavior expected of an APIGW differs from that expected for browser

based traffic. For that reason, and for our testing purposes, we separate the

APIGW configuration.

An APIGW takes all API calls from clients, then routes them to the appropriate

microservice with request routing, composition, and protocol translation. It handles

a request by invoking multiple microservices and aggregating the results, to determine

the best path for that request. It can translate between web protocols and web

unfriendly protocols that are used internally.

The test setup is similar to the RP example, with additional application level

monitoring to make sure the request gets to the right server. The file size tested

is 1KB.

The table below demonstrates the cost effectiveness of Amazon EC2 M6g instances

when configured as an NGINX APIGW. The performance results and cost benefits

are similar to the NGINX Plus RP with Amazon M6g instances providing 45% average

performance gains and 20% cost-savings compared to EC2 M5 instances depending

on the RPS range and instance size selected using three redundant instances.

Table 6: NGINX Plus API
Gateway Performance
per Instance size between
M6g and M5

Instance
Size

M6g M5 Performance
Gains

M6g M5 Performance
Gains

 Large 44,460 28,571 56% 32,859 20,400 61%

 XLarge 84,752 55,997 51% 62,691 42,432 48%

 2XLarge 178,815 120,500 48% 124,802 85,194 46%

 4XLarge 359,855 300,313 20% 322,483 200,821 61%

 Avg Gains 44% 54%

API Gateway 1KB - Performance results for M6g vs M5 per instance size

HS256 JWT Authentication –
Max Request per Second

No Authentication –
Max Request per Second

10

Table 7 : NGINX Plus
API Gateway Price &
Performance per Instance
type based on HS356
Authentication

Table 8: Maximum API
Gateway RPS values per
Instance type based on
HS356 Authentication

Below is a table of the results of the APIGW testing that shows the max RPS values

and RPS values at 66% utilization ratios for each instance tested.

Total RPS RPS/instance M6g - $/hr M5 - $/hr

250 83 0.23 0.29

500 167 0.23 0.29

1,000 333 0.23 0.29

2,000 667 0.23 0.29

 4,000 1,333 0.23 0.29

8,000 2,667 0.23 0.29

16,000 5,333 0.23 0.29

24,000 8,000 0.23 0.29

32,000 10,667 0.23 0.29

40,000 13,333 0.23 0.29

80,000 26,667 0.46 1.15

160,000 53,333 0.92 2.3

320,000 106,667 1.85 2.3

Redundancy: 3 Max util: 66%

Instance vCPU maximum RPS RPS at 66%
utilization

$/hour

M6g.XLarge 2 32,859 21,687 $ 0.077

M6g.XLarge 4 62,691 41,376 $ 0.154

M6g.2XLarge 8 124,802 82,370 $ 0.308

M6g.4XLarge 16 322,483 212,839 $ 0.616

M5.Large 2 20,400 13,464 $ 0.096

M5.XLarge 4 42,432 28,005 $ 0.192

M5.2XLarge 8 85,194 56,228 $ 0.384

M5.4XLarge 16 200,821 132,542 $ 0.768

API Gateway 1KB

11

Background
This section provides an overview of technologies and solutions offered by NGINX

(part of F5), Arm, and Amazon Web Services.

NGINX

NGINX Plus is a lightweight, flexible, portable, and all-in-one software load balancer,

reverse proxy, web server, content cache, and APIGW. By replacing a number of

single-function point solutions with NGINX Plus, you can modernize and simplify

your application architecture, reducing costs without compromising performance

or functionality.

Arm Neoverse

Arm advanced, energy-efficient processor designs have enabled intelligent computing

in more than 160 billion chips and our technologies now securely power products

from the sensor to the smartphone and the supercomputer. The Arm ecosystem

has been very strong in markets such as mobile, smart IoT, and infrastructure.

From cellular base stations to routers and servers, there are more Arm processors

shipping into infrastructure than any other architecture with nearly 30%-unit

share, and growing.

The Arm Neoverse platform is specifically designed from the ground up for

infrastructure with a roadmap committed to delivering more than 30% higher

performance per generation. Arm Neoverse-powered products enable a diverse set

of high-performance, secure and scalable solutions required for the infrastructure

foundation in a world of trillion intelligent devices.

For more information on Arm Neoverse family of products,

please visit https://www.arm.com/solutions/infrastructure

Amazon EC2 M6g Instances

Amazon EC2 M6g instances are powered by AWS Graviton2 processors that feature

64-bit Arm Neoverse cores and custom silicon designed by AWS. They deliver up

to 54% better price performance over current generation M5 instances and offer a

balance of compute, memory, and networking resources for a broad set of workloads.

They are the best choice for applications built on open-source software such as

application servers, microservices, gaming servers, mid-size data stores, and caching

fleets. Developers can also use these instances to build Arm-based applications

natively in the cloud, eliminating the need for cross-compilation and emulation,

https://www.arm.com/solutions/infrastructure

12

and improving time to market. M6g instances are available with local NVMe-based

SSD block-level storage option (M6gd) for applications that need access to high-

speed, low latency local storage.

For more information, please visit https://aws.amazon.com/ec2/instance-types/m6/

Appendix A –
Reverse Proxy/API Gateway Configs

Type Size Ubuntu 18.04 AMI Kernel NGINX OpenSSL

M6g Large, XLarge,
2XLarge,
4XLarge

ami-
0400a1104d5b9caa1

4.15.0 nginx/1.17.6
(nginx-plus-r20)

1.1.1

M5 Large, XLarge,
2XLarge,
4XLarge

ami-
07ebfd5b3428b6f4d

4.15.0 nginx/1.17.6
(nginx-plus-r20)

1.1.1

13

Appendix B –
Load Generator & Upstreams Config

Instance Type Ubuntu 18.04 AMI Kernel Installed App OpenSSL

Upstream
(File server)

M5.16XLarge ami-
07ebfd5b3428b6f4d

4.15.0 nginx/1.17.6 1.1.1

Client
(Load
Generator)

M5.16XLarge ami-
07ebfd5b3428b6f4d

4.15.0 Wrk2 Commit
44a94c17d8e6a
0bac8559b53da
76848e430cb7a7*
44a94c17d8e6a0bac8559b53da76848e430cb7a7*

1.1.1

*The wrk2 project does not have a clear versioning scheme, so we reference a commit hash.

14

Appendix C –
Other Networking Configuration Notes
Linux Networking Stack

Our automation system opens up the Linux network stack. The parameters that are

changed by the automation system should not impact the outcome of the test cases

presented in this paper. However, in the interest of full disclosure, we list the parameters

below along with commands that can be used to change them. A great resource for

understanding the parameters listed below is to run “man tcp” and “man listen” in

a shell.

Below are the commands used to set these parameters:

To view the default value before writing, remove the assignment.

For example

to view net.ipv4.ip, run “sysctl net.ipv4.ip_local_port_range”

sysctl net.ipv4.ip_local_port_range=”1024 65535”

sysctl net.ipv4.tcp_max_syn_backlog=65535

sysctl net.core.rmem_max=8388607

sysctl net.core.wmem_max=8388607

sysctl net.ipv4.tcp_rmem=”4096 8388607 8388607”

sysctl net.ipv4.tcp_wmem=”4096 8388607 8388607”

sysctl net.core.somaxconn=65535

sysctl net.ipv4.tcp_autocorking=0

15

Appendix D –
NGINX Configurations
Top Level Default nginx.conf (/etc/nginx/nginx.conf) for RP/APIGW and Upstreams

user www-data;

worker_processes auto;

worker_rlimit_nofile 1000000;

pid /run/nginx.pid;

events {

 worker_connections 1024;

 accept_mutex off;

 multi_accept off;

}

http {

 ##

 # Basic Settings

 ##

 sendfile on;

 tcp_nopush on;

 tcp_nodelay on;

 keepalive_timeout 75;

 keepalive_requests 1000000000;

 types_hash_max_size 2048;

 include /etc/nginx/mime.types;

 default_type application/octet-stream;

 ##

 # Logging Settings

 ##

 access_log off;

 # error_log off will not turn off error logs. Error logs will

redirect to /usr/share/nginx/off

 # The below comes the closest to actually turning off error logs.

 error_log /dev/null crit;

 ##

 # Virtual Host Configs

 ##

 include /etc/nginx/conf.d/*.conf;

 include /etc/nginx/sites-enabled/*;

}

16

The following are notes on the configuration shown above:

 sendfile, tcp_nopush, and tcp_nodelay are common optimizations for NGINX. These

optimizations reduce context switching and improve the flow of packets through the

Linux network stack.

 worker_rlimit_nofile is set to a large number to avoid too many open file errors.

 worker_connections - the number of concurrent worker connections is doubled to

achieve higher RPS values.

 access_log off - logging is disabled because it can affect the consistency of test

results. Please evaluate logging requirements for production environments.

 keepalive_requests increase the number of requests that can be made over a single

connection to reduce the overhead of establishing and destroying connections.

Upstream Servers default.conf (/etc/nginx/conf.d/default.conf)

The follow are notes on the configuration shown above:

 TLS/SSL is configured to use ECDHE for key exchange, ECDSA for authentication,

AES256-GCM for bulk encryption, and SHA384 for message authentication.

 We set the listen directive backlog to 65535, this is the same value that we set

the net.core.somaxconn Linux networking stack parameter.

HTTPS file server

server {

 listen 443 ssl reuseport backlog=65535;

 root /usr/share/nginx/html;

 index index.html index.htm;

 server_name $hostname;

 ssl on;

 ssl_certificate /etc/nginx/ssl/ecdsa.crt;

 ssl_certificate_key /etc/nginx/ssl/ecdsa.key;

 ssl_ciphers “ECDHE-ECDSA-AES256-GCM-SHA384”;

 location / {

 limit_except GET {

 deny all;

 }

 try_files $uri $uri/ =404;

 }

}

17

RP/APIGW default.conf (/etc/nginx/conf.d/default.conf)

Upstreams for https

upstream ssl_file_server_com {

 server 192.168.97.128:443;

 server 192.168.97.31:443;

 keepalive 1024;

}

JWT Authentication configs

auth_jwt “Performance Test API”;

auth_jwt_key_file /etc/nginx/jwk/server_jwt_keys.jwk;

HTTPS reverse proxy and API Gateway

server {

 listen 443 ssl reuseport backlog=65535;

 root /usr/share/nginx/html;

 index index.html index.htm;

 server_name $hostname;

 ssl on;

 ssl_certificate /etc/nginx/ssl/ecdsa.crt;

 ssl_certificate_key /etc/nginx/ssl/ecdsa.key;

 ssl_ciphers “ECDHE-ECDSA-AES256-GCM-SHA384”;

 # API Gateway Path

 location ~ ^/api_old/.*$ {

 limit_except GET {

 deny all;

 }

 rewrite ^/api_old/(.*)$ /api_new/$1 last;

 }

 location /api_new {

 internal;

 proxy_pass https://ssl_file_server_com;

 proxy_http_version 1.1;

 proxy_set_header Connection “”;

 }

 # Reverse Proxy Path

 location / {

 limit_except GET {

 deny all;

 }

 proxy_pass https://ssl_file_server_com;

 proxy_http_version 1.1;

 proxy_set_header Connection “”;

 }

}

18

The follow are notes on the configuration shown above:

 The upstream context shows that we are load balancing between six upstreams.

 The directive auth_jwt_key_file points to the JWK file that contains secrets and

public keys for verifying JWT token signatures. Having this directive present enables

JWT verification. To test without JWT verification, remove this line and the one

above it (auth_jwt), at which point all requests are forwarded to the upstreams

without requiring a token.

 This config can be used to test both RP and APIGW use cases. The first two location

blocks represents the APIGW path. Here we see that if the uri contains “/api_old/”

in it’s base, then it will get rewritten with “/api_new/”. This simulates an APIGW

translation. The last location block represents the RP path which forwards request

to the upstreams without a rewrite.

19

Appendix E –
TLS Keys & JWT Secrets/Keys

TLS Keys

All tests were done with TLS (HTTPS) enabled. As noted in the NGINX configs above,

we used a cipher suite of ECDHE-ECDSA-AES256-GCM-SHA384. This means you need

to generate ECDSA keys to establish the TLS session. In the testing above, our key was

based on a P-384 curve.

JWT Secrets & Keys

A good resource for understanding JWT is www.jwt.io.

If testing HS256, then a secret must be generated. Our secret was 816 bits long after

Base64url encoding. This length was selected so that even HS512 tokens can be tested

if desired. This is because according to the rfc7518 spec, the secret has to be at least as

large as the hash function used (816>512).

If testing RS256, then a public/private key pair must be generated. The keys we used

were 2048 bits long (spec minimum). There are numerous resources that show how to

create RSA keys on the internet.

Although we did not explore ES (eliptic curve) tokens, it is also possible to test these

as well. Similarly to the RS algorithms, the ES algorithms require public/private key pairs

to be created. There are numerous resources that show how to create ECDSA keys on

the internet.

https://jwt.io/

20

Appendix F –
Commands
Creating the Files to Serve

Run the following commands on the upstreams to generate the files that will be served:

Load Generator Commands

Build the wrk2 HTTP benchmark

Reverse-Proxy Test Commands

Below is an example command for testing the RP with a 1kb file:

<rp_apigw_ip_dns> is the private IP or DNS name of the RP/APIGW instances that is to

be tested.

Create 1kb file in RP use case directory

dd if=/dev/urandom of=/usr/share/nginx/html/1kb bs=1024 count=1

#Create 5kb file in RP use case directory

dd if=/dev/urandom of=/usr/share/nginx/html/5kb bs=1024 count=5

#Create 10kb file in RP use case directory

dd if=/dev/urandom of=/usr/share/nginx/html/10kb bs=1024 count=10

Copy files into the APIGW use case directory

mkdir -p /usr/share/nginx/html/api_new

cp /usr/share/nginx/html/1kb /usr/share/nginx/html/api_new

cp /usr/share/nginx/html/5kb /usr/share/nginx/html/api_new

cp /usr/share/nginx/html/10kb /usr/share/nginx/html/api_new

sudo apt update

sudo apt install -y make gcc zlib1g-dev libssl-dev

git clone https://github.com/giltene/wrk2

cd wrk2

make

./wrk --rate 10000000000 -t 64 -c 640 -d 60s https://<rp_apigw_ip_

dns>/1kb

21

API Gateway Commands

For the APIGW test, we use the same command as the RP test case, but with a different

URL (one that will be rewritten). Below is an example command for testing with a 1kb file:

./wrk --rate 10000000000 -t 64 -c 640 -d 60s https://<rp_apigw_ip_

dns>/api_old/1kb

About Wrk2 Command Line Options

 We select an extremely high rate (--rate) to ensure we are measuring throughput.

 The number of threads (-t) is set to 64 which is the number of vCPUs on the Load

Generator (m5.16xlarge).

 The number of connections (-c) is set to 10 times the number of threads which

is 640. We found this produces the highest throughput.

 The test duration (-d) is 60 seconds. We found this to be a sufficient amount

of time to get repeatable results.

22

 All brand names or product names are the property of their respective holders. Neither the whole nor any part of the
information contained in, or the product described in, this document may be adapted or reproduced in any material form except with
the prior written permission of the copyright holder. The product described in this document is subject to continuous developments
and improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties implied
or expressed, including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document
is intended only to provide information to the reader about the product. To the extent permitted by local laws Arm shall not be liable
for any loss or damage arising from the use of any information in this document or any error or omission in such information.

 © Arm Ltd. 2020

References
1. NetCraft web server survey – May 2020
2. Quick start guide for NGINX Plus on AWS
3. AWS EC2 Instance Pricing
4. Nginx basic tuning blog

https://news.netcraft.com/archives/category/web-server-survey/
https://aws-quickstart.s3.amazonaws.com/quickstart-nginx-plus/doc/nginx-plus-on-the-aws-cloud.pdf
https://aws.amazon.com/ec2/pricing/
https://www.nginx.com/blog/tuning-nginx/

